To reference the NKI-RS, please cite the following article:
- Nooner et al,. The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry. Frontiers in neuroscience 6 (2012).
The list of publications using NKI-RS data is rapidly growing. Below are the first 100 publications, curated by our group. For a comprehensive set, including recent publications we recommend this link to Google Scholar with search term: “NKI Rockland Sample”
The following publications discuss NKI-RS in the context of large-scale data-sharing efforts:
- Castellanos, F. X., Di Martino, A., Craddock, R. C., Mehta, A., D., Milham, M. P. (2013). Clinical applications of the functional connectome. Neuroimage 80: 527-540.
- Craddock, R. C., Tungaraza, R. L., & Milham, M. P. (2015). Connectomics and new approaches for analyzing human brain functional connectivity.GigaScience, 4(1), 1.
- Di Martino, A., Fair, D. A., Kelly, C., Satterthwaite, T. D., Castellanos, F. X., Thomason, M. E., … & Milham, M. P. (2014). Unraveling the miswired connectome: a developmental perspective. Neuron, 83(6), 1335-1353.
- Gorgolewski, K. J., Margulies, D.S., Milham, M. P. (2013). Making data sharing count: A publication-based solution. Frontiers in neuroscience 7, 9.
- GOTO, M., ABE, O., MIYATI, T., YAMASUE, H., GOMI, T., & TAKEDA, T. (2016). Head Motion and Correction Methods in Resting-state Functional MRI. Magnetic Resonance in Medical Sciences, 15(2), 178-186.
- Keator, D.B., Helmer, K., Steffener, J., Turner, J.A., Van Erp, T. G., Gadde, S., Ashish, N., Burns, G. A., Nichols, B. N. (2013). Towards structured sharing of raw and derived neuroimaging data across existing resources. Neuroimage 82: 647-661.
- King, M. D., Wood, D., Miller, B., Kelly, R., Landis, D., Courtney, W., … & Calhoun, V. D. (2014). Automated collection of imaging and phenotypic data to centralized and distributed data repositories.
- Lavagnino, L., Mwangi, B., Bauer, I. E., Cao, B., Selvaraj, S., Prossin, A., & Soares, J. C. (2016). Reduced Inhibitory Control Mediates the Relationship Between Cortical Thickness in the Right Superior Frontal Gyrus and Body Mass Index. Neuropsychopharmacology.
- Milham, M. P. (2012). Open Neuroscience Solutions for the Connectome-wide Association Era. Neuron 73, no. 2: 214-218.
- Mennes, M., Biswal, B. B., Castellanos, F. X., Milham, M. P. (2013). Making Data Sharing Work: The FCP/INDI Experience. Neuroimage 82: 683-691.
- Nichols, B. N., Mejino, J. L., Detwiler, L. T., Nilsen, T. T., Martone, M. E., Turner, J. A., … & Brinkley, J. F. (2014). Neuroanatomical domain of the foundational model of anatomy ontology. Journal of biomedical semantics,5(1), 1.
- Panta, S. R., Wang, R., Fries, J., Kalyanam, R., Speer, N., Banich, M., … & Turner, J. A. (2016). A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets. Frontiers in neuroinformatics, 10.
- Poldrack, R. A., Barch, D. M., Mitchell, J. P., Wager, T.D., Wagner, A. D., Devlin, J. T., Cumba, C., Koyejo, O., Milham, M. P. (2013). Toward Open Sharing of Task-based FMRI Data: The OpenfMRI Project.Frontiers in neuroinformatics 7.
- Poldrack, R. A., Gorgolewski, K.J. (2013). Making big data open: data sharing in neuroimaging. Nat. Neurosci. 17, 1510–1517.
- Pool, E. M., Rehme, A. K., Eickhoff, S. B., Fink, G. R., & Grefkes, C. (2015). Functional resting-state connectivity of the human motor network: Differences between right-and left-handers. NeuroImage, 109, 298-306.
- Puccio, B., Pooley, J. P., Pellman, J. S., Taverna, E. C., & Craddock, R. C. (2016). The Preprocessed Connectomes Project Repository of Manually Corrected Skull-stripped T1-weighted Anatomical MRI Data. bioRxiv, 067017.
- Somandepalli, K., Kelly, C., Reiss, P. T., Zuo, X. N., Craddock, R. C., Yan, C. G., … & Di Martino, A. (2015). Short-term test–retest reliability of resting state fMRI metrics in children with and without attention-deficit/hyperactivity disorder. Developmental Cognitive Neuroscience, 15, 83-93.
The following publications from researchers around the world have utilized data from the NKI-RS:
- Amft, M., Bzdok, D., Laird, A. R., Fox, P. T., Schilbach, L., & Eickhoff, S. B. (2014). Definition and characterization of an extended social-affective default network. Brain Structure and Function, Advance online publication. doi: 10.1007/s00429-013-0698-0.
- Basu, A. P., Taylor, P. N., Lowther, E., Forsyth, E. O., Blamire, A. M., & Forsyth, R. J. (2015). Structural connectivity in a paediatric case of anarchic hand syndrome. BMC neurology, 15(1), 234.
- Betzel, R. F., Avena-Koenigsberger, A., Goñi, J., He, Y., De Reus, M. A., Griffa, A., … & Van Den Heuvel, M. (2016). Generative models of the human connectome. Neuroimage, 124, 1054-1064.
- Betzel, R. F., Byrge, L., He, Y., Goni, J., Zuo, X. N., & Sporns, O. (2014). Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage, in press.
- Betzel, R. F., Mišić, B., He, Y., Rumschlag, J., Zuo, X. N., & Sporns, O. (2015). Functional brain modules reconfigure at multiple scales across the human lifespan. arXiv preprint arXiv:1510.08045.
- Bhushan, C., Haldar, J. P., Choi, S., Joshi, A. A., Shattuck, D. W.,& Leahy, R. M. (2015). Co-registration and distortion correction of diffusion and anatomical images based on inverse contrast normalization. Neuroimage,115, 269-280.
- Billings, J. C., Medda, A., & Keilholz, S. D. (2013, November). Agglomerative clustering for resting state MRI. In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on (pp. 553-556). IEEE.
- Bottger, J., Schurade, R., Jakobsen, E., Schaefer, A., & Margulies, D. S. (2014). Connexel visualization: a software implementation of glyphs and edge-bundling for dense connectivity data using braingl.Frontiers in neuroscience, 8, 15.
- Brown, J. A., Rudie, J. D., Bandrowski, A., Van Horn, J. D., & Bookheimer, S. Y. (2012). The ucla multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis.Frontiers in neuroinformatics, 6, 28.
- Bzdok, D. et al. (2014). Subspecialization in the human posterior medial cortex. NeuroImage
- Bzdok, D., Langner, R., Schilbach, L., Engemann, D. A., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Segregation of the human medial prefrontal cortex in social cognition. Frontiers in human neuroscience, 7, 232.
- Camilleri, J. A., Reid, A. T., Müller, V. I., Grefkes, C., Amunts, K., & Eickhoff, S. B. (2015). Multi-modal imaging of neural correlates of motor speed performance in the Trail Making Test. Frontiers in neurology, 6.
- Cao, M., Wang, J. H., Dai, Z. J., Cao, X. Y., Jiang, L. L., Fan, F. M., Song, X., Xia, M., Shu, N., Dong, Q., Milham, M.P., Castellanos, F. X., Zuo, X., & He, Y. (2014). Topological organization of the human brain functional connectome across the lifespan. Developmental cognitive neuroscience, 7, 76-93.
- Chase, H. W., Clos, M., Dibble, S., Fox, P., Grace, A. A., Phillips, M. L., & Eickhoff, S. B. (2015). Evidence for an anterior–posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: Focus on the subiculum. NeuroImage, 113, 44-60.
- Chen, R., Nixon, E., & Herskovits, E. (2016). Advanced connectivity analysis (ACA): a large scale functional connectivity data mining environment. Neuroinformatics, 14(2), 191-199.
- Chodkowski, B. A., Cowan, R. L., & Niswender, K. D. (2016). Imbalance in resting state functional connectivity is associated with eating behaviors and adiposity in children. Heliyon, 2(1), e00058.
- Chen, H., Kelly, C., Castellanos, F. X., He, Y., Zuo, X. N., & Reiss, P. T. (2015). Quantile rank maps: A new tool for understanding individual brain development. NeuroImage, 111, 454-463.
- Cieslik, E. C., Seidler, I., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2016). Different involvement of subregions within dorsal premotor and medial frontal cortex for pro-and antisaccades. Neuroscience & Biobehavioral Reviews, 68, 256-269.
- Clewett, D., Bachman, S., & Mather, M. (2014). Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety. Neuropsychology, 28(4), 631-642.
- Clos, M., Amunts, K., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Tackling the multifunctional nature of broca’s region meta-analytically: co-activation-based parcellation of area 44. Neuroimage, 83, 174-188.
- Clos, M., Rottschy, C., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula.Neuroimage, 99, 269-280.
- Corcoran, C. M., Keilp, J. G., Kayser, J., Klim, C., Butler, P. D., Bruder, G. E., … & Javitt, D. C. (2015). Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: a neurodevelopmental perspective. Psychological medicine, 45(14), 2959-2973.
- Davey, J., Cornelissen, P. L., Thompson, H. E., Sonkusare, S., Hallam, G., Smallwood, J., & Jefferies, E. (2015). Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. The Journal of Neuroscience, 35(46), 15230-15239.
- Di, X., & Biswal, B. B. (2015). Characterizations of resting-state modulatory interactions in the human brain. Journal of neurophysiology, 114(5), 2785-2796.
- Di, X., Gohel, S., Kim, E. H., & Biswal, B. B. (2013). Task vs. rest, different network configurations between the coactivation and the resting-state brain networks. Frontiers in human neuroscience, 7, 493.
- Di, X., Fu, Z., Chan, S. C., Hung, Y. S., Biswal, B. B., & Zhang, Z. (2015). Task-related functional connectivity dynamics in a block-designed visual experiment. Frontiers in human neuroscience, 9.
- Eickhoff, S. B., Laird, A. R., Fox, P. T., Bzdok, D., & Hensel, L. (2014). Functional segregation of the human dorsomedial prefrontal cortex. Cerebral cortex, bhu250.
- Fiori, M., Sprechmann, P., Vogelstein, J., Musé, P., & Sapiro, G. (2013). Robust multimodal graph matching: Sparse coding meets graph matching.Advances in Neural Information Processing Systems, 127-135.
- Fu, Zening, Xin Di, Shing-Chow Chan, Yeung-Sam Hung, Bharat B Biswal, and Zhiguo Zhang. (2013). Time-varying correlation coefficients estimation and its application to dynamic connectivity analysis of fmri. 35th Annual International Conference of the IEEE EMBS, 2944-2947.
- Fukushima, M., Betzel, R. F., He, Y., Zuo, X. N., & Sporns, O. (2015). Characterizing Spatial Patterns and Flow Dynamics in Functional Connectivity States and Their Changes across the Human Lifespan. arXiv preprint arXiv:1511.06427.
- Gastner, M. T., & Ódor, G. (2015). The topology of large Open Connectome networks for the human brain. arXiv preprint arXiv:1512.01197.
- Genon, S., Müller, V. I., Cieslik, E., Hoffstaedter, F., Langner, R., Fox, P. T., & Eickhoff, S. B. (2014). Examining the right dorsal premotor mosaic: a connectivity-based parcellation approach. In OHBM Annual Meeting.
- Gohel, S. R., & Biswal, B.B. (2014). Functional integration between brain regions at rest occurs in multiple-frequency bands. Brain connectivity, Advance online publication. doi:10.1089/brain.2013.0210.
- Gorgolewski, K. J., Lurie, D., Urchs, S., Kipping, J. A., Craddock, R. C., Milham, M. P., Margulies, D. S., & Smallwood, J. (2014). A correspondence between individual differences in the brain’s intrinsic functional architecture and the content and form of self-generated thoughts. PloS one, 9(5), e97176.
- Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: replication from dcm. Neuroimage, 99, 180-190.
- Grandy, T. H., Garrett, D. D., Schmiedek, F., & Werkle-Bergner, M. (2016). On the estimation of brain signal entropy from sparse neuroimaging data. Scientific reports, 6.
- Grothe, M., Heinsen, H., & Teipel, S. (2012). Reduced network switching in aging correlates with atrophy of the cholinergic basal forebrain. Klinische Neurophysiologie, 43(01), P047.
- Han, C. E., Peraza, L. R., Taylor, J.-P. & Kaiser, M. (2014). Predicting age of human subjects based on structural connectivity from diffusion tensor imaging. ArXiv Prepr. ArXiv14055260
- Hardwick, R. M., Lesage, E., Eickhoff, C. R., Clos, M., Fox, P., & Eickhoff, S. B. (2015). Multimodal connectivity of motor learning-related dorsal premotor cortex. NeuroImage, 123, 114-128.
- He, Y., Xu, T., Zhang, W., & Zuo, X. N. (2015). Lifespan anxiety is reflected in human amygdala cortical connectivity. Human brain mapping.
- Heuer, K. et al. (2014). Browsing the connectome: 3D functional and structural brainnetworks in the cloud. 20th Annual Meeting of the Organization for Human Brain Mapping (OHBM).
- Hok, P., Opavský, R., Hluštík, P., & Tüdös, Z. (2015). 29. Meta-analytic and resting-state functional connectivity of the claustrum. Clinical Neurophysiology, 126(3), e39-e40.
- Hoffstaedter, F., Grefkes, C., Roski, C., Caspers, S., Zilles, K., & Eickhoff, S. B. (2014). Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation.Brain Structure and Function, Advance online publication. doi: 10.1007/s00429-013-0696-2.
- Horn, A., & Blankenburg, F. (2016). Toward a standardized structural–functional group connectome in MNI space. NeuroImage, 124, 310-322.
- Hwang, K., Bertolero, M. A., Liu, W., & D’Esposito, M. (2016). The human thalamus is an integrative hub for functional brain networks. bioRxiv, 056630.
- Jakab, A., Blanc, R., & Berenyi, E. L. (2012). Mapping changes of in vivo connectivity patterns in the human mediodorsal thalamus: correlations with higher cognitive and executive functions. Brain imaging and behavior, 6(3), 472-483.
- Jakab, A., Emri, M., Spisak, T., Szeman-Nagy, A., Beres, M., Kis, S. A., Molnar, P., & Berenyi, E. (2013). Autistic traits in neurotypical adults: correlates of graph theoretical functional network topology and white matter anisotropy patterns. PloS one, 8(4), e60982.
- Jiang, L., Xu, T., He, Y., Hou, X. H., Wang, J., Cao, X. Y., Wei, G. X., Yang, Z., Yong, H., & Zuo, X. N. (2014). Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Structure and Function, Advance online publication. doi: 10.1007/s00429-014-0795-8.
- Jiang, L., & Zuo, X. N. (2015). Regional homogeneity a multimodal, multiscale neuroimaging marker of the human connectome. The Neuroscientist, 1073858415595004.
- Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X. & Milham, M. P. (2012). Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn. Sci. 16, 181–188
- King, M. D. et al. (2014). Automated collection of imaging and phenotypic data to centralized and distributed data repositories. Front. Neuroinformatics 8, 60
- King, M. D., Wood, D., Miller, B., Kelly, R., Landis, D., Courtney, W., … & Calhoun, V. D. (2014). Automated collection of imaging and phenotypic data to centralized and distributed data repositories.
- Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in neuroscience, 6, 171.
- Kogler, L., Müller, V. I., Chang, A., Eickhoff, S. B., Fox, P. T., Gur, R. C., & Derntl, B. (2015). Psychosocial versus physiological stress—Meta-analyses on deactivations and activations of the neural correlates of stress reactions.Neuroimage, 119, 235-251.
- Kong, X. Z. (2014). Association between in-scanner head motion with cerebral white matter microstructure: a multiband diffusion-weighted MRI study. PeerJ, 2, e366.
- Krall, S. C., Rottschy, C., Oberwelland, E., Bzdok, D., Fox, P. T., Eickhoff, S. B., Fink, G.R., & Konrad, K. (2014). The role of the right temporoparietal junction in attention and social interaction as revealed by ale meta-analysis. Brain Structure and Function, Advance online publication. doi: 0.1007/s00429-014-0803-z.
- Laird, A. R., Eickhoff, S. B., Rottschy, C., Bzdok, D., Ray, K. L., & Fox, P. T. (2013). Networks of task co-activations. Neuroimage, 80, 505-514.
- Li, K., Langley, J., Li, Z.,& Hu, X. (2014). Connectomic profiles for individualized resting state networks and rois. Brain connectivity, Advance online publication. doi: 0.1089/brain.2014.0229.
- Li, Q., Song, M., Fan, L., Liu, Y., & Jiang, T. (2015). Parcellation of the primary cerebral cortices based on local connectivity profiles. Frontiers in neuroanatomy, 9.
- Liao, Xu-Hong, Ming-Rui Xia, Ting Xu, Zheng-Jia Dai, Xiao-Yan Cao, Hai-Jing Niu, Xi-Nian Zuo, Yu-Feng Zang, and Yong He. (2013). Functional brain hubs and their test-retest reliability: a multiband resting-state functional mri study. Neuroimage, 83, 969-982.
- Liao, X., Yuan, L., Zhao, T., Dai, Z., Shu, N., Xia, M., … & He, Y. (2015). Spontaneous functional network dynamics and associated structural substrates in the human brain. Frontiers in human neuroscience, 9.
- Lim, S., Han, C. E., Uhlhaas, P. J., & Kaiser, M. (2013). Preferential detachment during human brain development: age-and sex-specific structural connectivity in diffusion tensor imaging (dti) data. Cerebral Cortex, bht333.
- Lo, Y. P., O’Dea, R., Crofts, J. J., Han, C. E., & Kaiser, M. (2015). A geometric network model of intrinsic grey-matter connectivity of the human brain.Scientific reports, 5.
- Luo, Q., Lu, W., Cheng, W., Valdes-Sosa, P. A., Wen, X., Ding, M., & Feng, J. (2013). Spatio-temporal granger causality: a new framework. Neuroimage, 79, 241-263.
- Malpas, C. B., Genc, S., Saling, M. M., Velakoulis, D., Desmond, P. M., & O’Brien, T. J. (2016). MRI correlates of general intelligence in neurotypical adults. Journal of Clinical Neuroscience, 24, 128-134.
- Mao, D., Ding, Z., Jia, W., Liao, W., Li, X., Huang, H., … & Zhang, H. (2015). Low-frequency fluctuations of the resting brain: high magnitude does not equal high reliability. PloS one, 10(6), e0128117.
- McDonald, A., Muraskin, J., Van Dam, N. T., Froehlich, C., Puccio, B., Pellman, J., … & Carter, S. (2016). The Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation Neuroimaging Data Repository. bioRxiv, 075275.
- Mennes, M., Jenkinson, M., Valabregue, R., Buitelaar, J. K., Beckmann, C., & Smith, S. (2014). Optimizing full-brain coverage in human brain MRI through population distributions of brain size. NeuroImage, 98, 513-520.
- Muller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization. Frontiers in human neuroscience, 7, 68.
- Muller, V. I., Langner, R., Cieslik, E. C., Rottschy, C., & Eickhoff, S. B. (2014). Interindividual differences in cognitive flexibility: influence of gray matter volume, functional connectivity and trait impulsivity. Brain Structure and Function, Advance online publication. doi: 10.1007/s00429-014-0797-6.
- Murray, R. J., Debbane, M., Fox, P. T., Bzdok, D., & Eickhoff, S. B. (2015). Functional connectivity mapping of regions associated with self‐and other‐processing. Human brain mapping, 36(4), 1304-1324.
- Mwangi, B., Hasan, K. M., & Soares, J. C. (2013). Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage, 75, 58-67.
- Nickl-Jockschat, T., Rottschy, C., Thommes, J., Schneider, F., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Neural networks related to dysfunctional face processing in autism spectrum disorder. Brain Structure and Function, Advance online publication. doi: 10.1007/s00429-014-0791-z.
- Nooner, K. B., Mennes, M., Brown, S., Castellanos, F. X., Leventhal, B., Milham, M. P., & Colcombe, S. J. (2013). Relationship of trauma symptoms to amygdala based functional brain changes in adolescents.Journal of traumatic stress, 26(6), 784-787.
- Oler, J. A., Birn, R. M., Patriat, R., Fox, A. S., Shelton, S. E., Burghy, C. A., Stodola, D.E., Essex, M. J., Davidson, R. J., & Kalin, N. H. (2012). Evidence for coordinated functional activity within the extended amygdala of non-human and human primates. Neuroimage, 61(4), 1059-1066.
- O’Muircheartaigh, J., Keller, S. S., Barker, G. J., & Richardson, M. P. (2015). White matter connectivity of the thalamus delineates the functional architecture of competing thalamocortical systems. Cerebral Cortex, 25(11), 4477-4489.
- Ovadia-Caro, S., Nir, Y., Soddu, A., Ramot, M., Hesselmann, G., Vanhaudenhuyse, A., Dinstein, I., Tshibanda, J. L., Harel, M., Laureys, S., & Malach, R. (2012). Reduction in inter-hemispheric connectivity in disorders of consciousness. PloS one, 7(5), e37238.
- Park, B. Y., Seo, J., & Park, H. (2016). Functional brain networks associated with eating behaviors in obesity. Scientific reports, 6.
- Potvin, O., Mouiha, A., Dieumegarde, L., Duchesne, S., & Alzheimer’s Disease Neuroimaging Initiative. (2016). Normative data for subcortical regional volumes over the lifetime of the adult human brain. NeuroImage.
- Qin, J., Chen, S. G., Hu, D., Zeng, L. L., Fan, Y. M., Chen, X. P., & Shen, H. (2015). Predicting individual brain maturity using dynamic functional connectivity. Frontiers in human neuroscience, 9.
- Reetz, K., Dogan, I., Rolfs, A., Binkofski, F., Schulz, J. B., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2012). Investigating function and connectivity of morphometric findings exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (sca17). Neuroimage, 62(3), 1354-1366.
- Reid, A. T., Bzdok, D., Langner, R., Fox, P. T., Laird, A. R., Amunts, K., … & Eickhoff, C. R. (2015). Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex. Brain Structure and Function, 1-17.
- Reid, A. T., Hoffstaedter, F., Gong, G., Laird, A. R., Fox, P., Evans, A. C., … & Eickhoff, S. B. (2016). A seed-based cross-modal comparison of brain connectivity measures. Brain Structure and Function, 1-21.
- Reid, A. T., Lewis, J., Bezgin, G., Khundrakpam, B., Eickhoff, S. B., McIntosh, A. R., … & Evans, A. C. (2016). A cross-modal, cross-species comparison of connectivity measures in the primate brain. NeuroImage, 125, 311-331.
- Roncal, W. G., Koterba, Z. H., Mhembere, D., Kleissas, D. M., Vogelstein, J. T., Burns, R., … & Wu, L. (2013, December). MIGRAINE: MRI graph reliability analysis and inference for connectomics. In Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE (pp. 313-316). IEEE.
- Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Human brain mapping, 35, 4566-4582.
- Schaefer, A., Margulies, D. S., Lohmann, G., Gorgolewski, K. J., Smallwood, J., Kiebel, S. J., & Villringer, A. (2014). Dynamic network participation of functional connectivity hubs assessed by resting-state fmri. Frontiers in human neuroscience, 8, 195.
- Scheel, N., Chang, C., & Mamlouk, A. M. (2014, September). The Importance of Physiological Noise Regression in High Temporal Resolution fMRI. In International Conference on Artificial Neural Networks (pp. 829-836). Springer International Publishing.
- Scheel, N., Essenwanger, A., Münte, T. F., Heldmann, M., Krämer, U. M., & Mamlouk, A. M. (2015). Selection of Seeds for Resting-State fMRI-Based Prediction of Individual Brain Maturity. Bildverarbeitung für die Medizin 2015, 371-376.
- Shehzad, Z., Kelly, C., Reiss, P. T., Cameron Craddock, R., Emerson, J. W., McMahon, K., Copland, D. A., Castellanos, F. X., & Milham, M. P. (2014). A multivariate distance-based analytic framework for connectome-wide association studies. Neuroimage, 93, 74-94.
- Shine, J. M., Bell, P. T., Koyejo, O., Bissett, P. G., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2015). Dynamic fluctuations in global brain network topology characterize functional. Neuron, 88(1), 207-19.
- Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., … & Poldrack, R. A. (2016). The dynamics of functional brain networks: Integrated network states during cognitive function. arXiv preprint arXiv:1511.02976.
- Singh, S. S., Khundrakpam, B., Reid, A. T., Lewis, J. D., Evans, A. C., Ishrat, R., … & Singh, R. B. (2016). Scaling in topological properties of brain networks. Scientific reports, 6.
- Sochat, V., Supekar, K., Bustillo, J., Calhoun, V., Turner, J. A., & Rubin, D. L. (2014). A robust classifier to distinguish noise from fmri independent components. PloS one, 9(4), e95493.
- Stramaglia, S., Pellicoro, M., Angelini, L., Amico, E., Aerts, H., Cortés, J., … & Marinazzo, D. (2015). Conserved Ising Model on the Human Connectome.arXiv preprint arXiv:1509.02697.
- Tao, C., & Feng, J. (2016). Nonlinear association criterion, nonlinear Granger causality and related issues with applications to neuroimage studies. Journal of neuroscience methods, 262, 110-132.
- Tarquino, J., Rueda, A., & Romero, E. (2014). A multiscale/sparse representation for diffusion weighted imaging (dwi) super-resolution. In Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium, 983-986.
- Taylor, P. N., & Forsyth, R. (2016). Heterogeneity of trans-callosal structural connectivity and effects on resting state subnetwork integrity may underlie both wanted and unwanted effects of therapeutic corpus callostomy.NeuroImage: Clinical, 12, 341-347.
- Taylor, P., Hobbs, J. N., Burroni, J., & Siegelmann, H. T. (2015). The global landscape of cognition: hierarchical aggregation as an organizational principle of human cortical networks and functions. Scientific reports, 5.
- Tian, L., Ma, L., & Wang, L. (2016). Alterations of functional connectivities from early to middle adulthood: Clues from multivariate pattern analysis of resting-state fMRI data. NeuroImage, 129, 389-400.
- Tustison, N. J., Avants, B. B., Cook, P. A., Kim, J., Whyte, J., Gee, J. C. and Stone, J. R. (2014) Logical circularity in voxel-based analysis: normalization strategy may induce statistical bias. Hum. Brain Mapp., 35: 745–759. doi: 10.1002/hbm.22211.
- Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T., Kandel, B. M., van Strien, N., Stone, J. R., Gee, J. C., Avants, B. B. (2014). Large-scale evaluation of ants and freesurfer cortical thickness measurements. Neuroimage, 99, 166-179.
- Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. The Journal of Neuroscience, 31(50), 18578-18589.
- Vadovičová, K. (2014). Affective and cognitive prefrontal cortex projections to the lateral habenula in humans. Frontiers in human neuroscience, 8.
- Van Dam, N., O’Connor, D., Marcelle, E. T., Ho, E. J., Craddock, R. C., Tobe, R. H., … & Milham, M. P. (2016). Data-Driven Phenotypic Categorization for Neurobiological Analyses: Beyond DSM-5 Labels. bioRxiv, 051789.
- Wang, J., Fan, L., Wang, Y., Xu, W., Jiang, T., Fox, P. T., … & Jiang, T. (2015). Determination of the posterior boundary of Wernicke’s area based on multimodal connectivity profiles. Human brain mapping, 36(5), 1908-1924.
- Wang, X, Y Jiao, T Tang, H Wang, and Z Lu. (2013). Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.Neuroscience, 254, 404-426.
- Wang, X., Yang, N., He, Y., Zhang, Z., Zhu, X., Dong, H., Hou, X., Li, H., Zuo, X. (2014). The developmental trajectory of hippocampus across the human lifespan based on multimodal neuroimaging. Chinese Journal of Contemporary Neurology and Neurosurgery, 14(4), 291-297.
- Wu, G. R., & Marinazzo, D. (2016). Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations. Phil. Trans. R. Soc. A, 374(2067), 20150190.
- Xu, T., Yang, Z., Jiang, L., Xing, X. X., & Zuo, X. N. (2015). A connectome computation system for discovery science of brain. Science Bulletin, 60(1), 86-95.
- Yan, C. G., Yang, Z., Colcombe, S., Zuo, X. N., & Milham, M. (2016). Concordance Among Indices of Intrinsic Brain Function: Inter-Individual Variation and Temporal Dynamics Perspectives. bioRxiv, 048405.
- Yang, Z., Chang, C., Xu, T., Jiang, L., Handwerker, D. A., Castellanos, F. X., Milham, M.P., Bandettini, P.A., & Zuo, X. N. (2014). Connectivity trajectory across lifespan differentiates the precuneus from the default network. Neuroimage, 89, 45-56.
- Yang, Z., Craddock, R. C., & Milham, M. P. (2014). Impact of hematocrit on measurements of the intrinsic brain. Frontiers in neuroscience, 8.
- Yang, Z., Craddock, R. C., Margulies, D. S., Yan, C. G., & Milham, M. P. (2014). Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics.Neuroimage, 93, 124-137.
- Yao, L., Li, W., Dai, Z., & Dong, C. (2016). Eating behavior associated with gray matter volume alternations: A voxel based morphometry study. Appetite,96, 572-579.
- Zhang, S., Hu, S., Chao, H. H., & Li, C. S. R. (2015). Resting-state functional connectivity of the locus coeruleus in humans: in comparison with the ventral tegmental area/substantia nigra pars compacta and the effects of age. Cerebral Cortex, bhv172.
- Zhao, J., Li, M., Zhang, Y., Song, H., von Deneen, K. M., Shi, Y., … & He, D. (2016). Intrinsic brain subsystem associated with dietary restraint, disinhibition and hunger: an fMRI study. Brain imaging and behavior, 1-14.
- Zhao, T., Cao, M., Niu, H., Zuo, X. N., Evans, A., He, Y., … & Shu, N. (2015). Age‐related changes in the topological organization of the white matter structural connectome across the human lifespan. Human brain mapping, 36(10), 3777-3792.
- Zuo, Xi-Nian, Ting Xu, Lili Jiang, Zhi Yang, Xiao-Yan Cao, Yong He, Yu-Feng Zang, F Xavier Castellanos, and Michael P Milham. (2013). Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage, 65, 374-386.
- Zuo, X. N., & Xing, X. X. (2014). Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100-118.
- 颜志雄. (2016). 社会认知静息态脑网络的毕生发展轨线.